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Abstract. The cross-sections for the reactions of muonium (anti-muonium) production in the high-energy

electron (positron) scattering by nuclei e−(e+)+Z → Z+M0(M̄0)+µ−(µ+) are calculated in dependence
on energy and polarization of the initial electron (positron) and polarization of the final µ−(µ+)-meson.
Since this is a coherent phenomenon the cross-sections are proportional to Z2. For Z ∼ 100, due to the
factor Z2, the cross-sections are large enough to be measured at the energies available for the HERA
Collider at DESY. The results are discussed in connection with a test of CPT invariance.

PACS. 11.10.-z Field theory – 13.40.-f Electromagnetic processes and properties – 13.66.De Lepton pro-
duction in e−e+ interactions – 13.66.Jn Precision measurements in e−e+ interactions

1 Introduction

The standard model [1] represents the Lagrangian ap-
proach [2] to the description of strong, electromagnetic
and weak interaction of elementary particles, based on
the assumptions of locality and Lorentz invariance. Due
to the Lüders-Pauli theorem (or the CPT theorem) [3] lo-
cality and Lorentz invariance of the Lagrangian of a quan-
tum system lead to the invariance of a quantum system
under CPT transformation which contains i) a charge con-
jugation (C ), a replacement of all particles by their anti-
particles, ii) a parity transformation (P ), a reflection of
spatial coordinates (t, �x ) → (t,−�x ), and iii) a time rever-
sal (T ), a reflection of time (t, �x ) → (−t, �x ). The sim-
plest consequence of the CPT theorem is the equality of
masses and lifetimes of particles and their anti-particles.
At present these are the most experimentally well-verified
requirements of the CPT theorem [4]. Nevertheless, the-
oretical and experimental tests for CPT invariance are
still a well-motivated problem of elementary particle and
nuclear physics [5]. This is related to the development
of modern quantum field theories of strings and super-
strings [6], which are more fundamental than the stan-
dard model and include it in the low-energy limit. Since
string theories deal with extended non-local objects, the
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Lüders-Pauli theorem is not valid for these theories. A
direct consequence of this can be a violation of CPT in-
variance for high-energy reactions of elementary particles
and nuclei.

The problem of a test of CPT and Lorentz invari-
ance has been recently discussed by Kostelecký with
co-workers [7]. They suggested to check CPT and Lorentz
invariance analysing the microwave spectroscopy of
muonium M0 [8,9]. Muonium M0 is a leptonic hydrogen-
like bound state of a positively charged muon µ+ and
an electron e−. It was discovered in 1960 through the
observation of its characteristic Larmor precession in a
magnetic field [9]. The mean lifetime of muonium τM0

is approximately equal to the lifetime of a positively
charged muon τM0 � τµ+ = 2.197 × 10−6 s [1]. Due
to the absence of strong interactions, muonium is an
ideal system i) for determining the properties of muons,
ii) for testing quantum electrodynamics [10], and iii)
for searching for effects of unknown interactions in the
electron-muon bound state [11]. Anti-muonium M̄0 is the
leptonic analog of anti-hydrogen. It is a bound state of a
negatively charged muon µ− and a positron e+.

A hydrogen-like structure of muonium allows to use
atomic notations for the classification of its quantum
states. For example, 2S+1LJ corresponds to the quantum
state of muonium (or anti-muonium) with a total angular
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momentum (or a total spin) J , an angular momentum L
and a spin S [1].

The use of muoniums M0 and anti-muoniums M̄0 1 as
a laboratory for a test of CPT invariance has been re-
cently suggested by Choban and Kazakov [12]. In their
approach muoniums and anti-muoniums are produced
with a total angular momentum J = 0 in the reactions
e− + Z → Z +M0 + µ− and e+ + Z → Z + M̄0 + µ+ of
high-energy scattering of electrons and positrons by nuclei
with a number of protons Z. According to atomic classifi-
cation, muonium (or anti-muonium) with a total angular
momentum J = 0 can be in two bound states: i) a ground
1s state 1S0 with L = S = 0 and ii) an excited 2p state
3P0 with L = S = 1.

Due to the principle of superposition, muonium and
anti-muonium should be produced in the reactions e− +
Z → Z+M0+µ− and e++Z → Z+M̄0+µ+ in both states
1S0 and 3P0. The interference of these states should lead to
time oscillations of the probability for the muonium (anti-
muonium) to be detected at a moment t. A comparison
of the time oscillations of the probabilities of the detected
muonium and anti-muonium should testify whether CPT
invariance is conserved or not. This is Choban-Kazakov’s
idea of a test of CPT invariance in the high-energy reac-
tions e− +Z → Z+M0 +µ− and e+ +Z → Z+M̄0 +µ+.
In terms of formulas it can be represented as follows.

Let the wave function of muonium produced in the
reaction e− + Z → Z +M0 + µ− be defined by

ΨM0(t, �x ) =

√
mM0

|�k |
ei�k·�x−i Et ΨM0(t), (1.1)

where E and �k are the energy and 3-momentum of muo-
nium, mM0 is the mass of muonium. Note that the energy
E does not contain the contributions of the binding ener-
gies E1s and E2p of the bound 1s and 2p states. The wave
function ΨM0(t) can be written as

ΨM0(t) = C1s exp
(
− i

mM0

E
E1st

)
+C2p exp

(
− i

mM0

E
E2pt

)
. (1.2)

The coefficients C1s and C2p describe the contributions of
the 1s and 2p states, respectively.

Introducing a parameter ε = |C2p|2/|C1s + C2p|2, re-
lated to a fraction of the excited 2p state in the wave func-
tion of muonium ΨM0(t, �x ) [12], the probability to find the
muonium at moment t can be given by

PM0(t) = PM0(0) [1 − 4
√
ε (1 −√

ε) sin2(Ωt)], (1.3)

where Ω = mµ(E2p − E1s)/2E = 5.103 × 10−6

× (mµ/E) MeV [7]2.
1 Anti-muonium M̄0 is a bound state of a negatively charged
muon µ− and a positron e+. It is the leptonic analog of the
anti-hydrogen.

2 The account for a constant relative phase 2ϕ of coeffi-
cients C1s and C2p changes the probability (1.3) as follows:

PM0(t) = PM0(0) [1−4√ε (
√
1− ε sin2 ϕ−√

ε cosϕ) sin(Ωt+
ϕ) sin(Ωt)].

It is seen that the probability PM0(t) is an oscillating
function. The period of oscillations TM0 is determined by

TM0 =
2π
Ω

=
4π

E2p − E1s

(
E

mµ

)
=

1.232 × 106

(
E

mµ

)
MeV−1. (1.4)

In order to get TM0 in seconds we have to multiply the
r.h.s. of (1.4) by � = 6.582 × 10−22 MeV s [7]. This yields
TM0 = 8.106 × 10−16 (E/mµ) s. The period of oscillations
TM0 should be compared with the lifetime of muonium
in the laboratory frame tM0 which is related to the mean
lifetime τM0 by the relativistic relation

tM0 =
(
E

mµ

)
τM0 . (1.5)

Taking into account that τM0 � 2.197 × 10−6 s, we are
able to estimate the number of oscillations νM0 :

νM0 =
tM0

TM0
� 2.710 × 10 9. (1.6)

An analogous expression can be written down for the prob-
ability PM̄0(t) to detect the anti-muonium at moment t
with parameters ε̄ and Ω̄. The result reads

PM̄0(t) = PM̄0(0) [1 − 4
√
ε̄ (1 −√

ε̄) sin2(Ω̄t)] . (1.7)

A relation of the probabilities PM0(t) and PM̄0(t) to the
experimental analysis of the violation of CPT invariance
in the reactions e− + Z → Z + M0 + µ− and e+ + Z →
Z + M̄0 + µ+ is the following.

For the calculation of the amplitude of muonium and
anti-muonium production in the reactions e− + Z →
Z +M0 + µ− and e+ +Z → Z + M̄0 + µ+ we use the ef-
fective Lagrangian of the M0µ+e− interaction which can
be defined as

LM0µ+e−(x) = g1s ψ̄µ−(x)γ5ψe−(x)Φ†
1s(x)

+g2p ψ̄µ−(x)ψe−(x)Φ†
2p(x) , (1.8)

where ψ̄µ−(x) and ψe−(x) are the local interpolating fields
of the µ+-meson and the electron e−, Φ1s(x) and Φ2p(x)
are the local operators of the interpolating fields of muo-
nium in the states 1s and 2p, respectively. They are ex-
panded into plane waves and operators of creation and
annihilation.

The wave functions of the relative motion of the
muon µ+ and the electron e− contribute to the cou-
pling constants g1s and g2p, which define the interac-
tion of muonium in the 1s and 2p states with the µ+e−
pair, respectively. For the calculation of the effective cou-
pling constant we use the wave functions of muonium
in the states 1S0 and 3P0 with the total momentum �P
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Fig. 1. Feynman diagrams of the amplitude of the reaction �e − + Z → Z +M0 + �µ −.

defined by [13,14]

|M0(�P ); 1S0〉 =
1

(2π)3

∫
d3k√

2Ee−(�k)

d3q√
2Eµ+(�q )

×δ(3)(�P − �k − �q )ϕ1s(�k)
1√
2

[b†e−(�k,+1/2)d†µ+(�q,−1/2)

−b†e−(�k,−1/2)d†µ+(�q,+1/2)]|0〉,

|M0(�P ); 3P0〉 =
1

(2π)3

∫
d3k√

2Ee−(�k)

d3q√
2Eµ+(�q )

×δ(3)(�P − �k − �q )ϕ2p(�k)
1√
2

[b†e−(�k,+1/2)d†µ+(�q,−1/2)

+b†e−(�k,−1/2)d†µ+(�q,+1/2)]|0〉, (1.9)

where |0〉 is the vacuum wave function; b†e−(�k, σ) (be−(�k, σ)
and d†µ+(�k, σ) (dµ+(�k, σ) are creation (annihilation) oper-

ators of the electron and muon µ+ with momentum �k and
polarization σ = ±1/2. These operators obey the covari-
ant canonical anti-commutation relations

{be−(�k, σ), b†e−(�k ′, σ′)} = (2π)32Ee−(�k) δ(3)(�k − �k ′)δσσ ′ ,

{dµ+(�k, σ), d†µ+(�k ′, σ′)} = (2π)32Eµ+(�k) δ(3)(�k − �k ′)δσσ ′ .

(1.10)

Then, ϕ1s(�k) and ϕ2p(�k) are the wave functions of the 1s
and 2p states in the momentum representation. They are
normalized to unity:∫

d3k

(2π)3
|ϕ1s(�k)|2 =

∫
d3k

(2π)3
|ϕ2p(�k)|2 = 1. (1.11)

The wave functions (1.9) are normalized by

〈1S0;M0(�P )|M0(�P ′); 1S0〉 =

(2π)32E(1s)
M0 (�P ) δ(3)(�P − �P ′),

〈3P0;M0(�P )|M0(�P ′); 3P0〉 =

(2π)32E(2p)
M0 (�P ) δ(3)(�P − �P ′), (1.12)

where E(n)
M0(�P ) =

√
(mµ+ +me− + En)2 + �P 2 is the total

energy of muonium with En = E1s and En = E2p for the
1s and 2p states, respectively.

In the limit me → 0 due to invariance of the inter-
polating electron field ψe−(x) under γ5-transformation,
ψe−(x) → γ5ψe−(x), the effective Lagrangian (1.8) can
be transcribed into the form

LM0µ+e−(x) = ψ̄µ−(x)γ5ψe−(x) (g1s Φ
†
1s(x) + g2p Φ

†
2p(x)).
(1.13)

Through the loop diagrams in fig. 1 the coupling constants
g1s and g2p are related to the constants C1s and C2p (1.2).

Since one cannot distinguish experimentally the 1s
and 2p states of muonium and of anti-muonium, the
number of favourable events NM0(T ) and NM̄0(T ), de-
tected during an interval T , should be proportional to
σ

(e− Z)
M0 (E1)PM0(T ) and σ(e+ Z)

M̄0 (E1)PM̄0(T ):

NM0(T ) = σ
(e− Z)
M0 (E1)PM0(T )LT ,

NM̄0(T ) = σ
(e+ Z)

M̄0 (E1)PM̄0(T )LT , (1.14)

where σ(e− Z)
M0 (E1) and σ

(e+ Z)

M̄0 (E1) are the cross-sections
for the reactions e− + Z → Z +M0 + µ− and e+ + Z →
Z + M̄0 + µ+, respectively, E1 is the energy of the initial
electron and positron in the laboratory frame, and L is
the luminosity of the collider.

Calculating the cross-sections in the CPT-invariant ap-
proximation, σ(�e + Z)

M̄0 (E1) = σ
(�e − Z)
M0 (E1), the ratio of the

numbers of favourable events R(T ) = NM0(T )/NM̄0(T )
should be defined only by the ratio PM0(T )/PM̄0(T ). It
reads

R(T ) =
NM0(T )
NM̄0(T )

=
PM0(T )
PM̄0(T )

. (1.15)

Thus, measuring the ratio R(T ) of favourable events one
can conclude that i) CPT invariance is broken if R(T ) de-
pends on the time of observation and oscillates in time,
and ii) CPT invariance is unbroken if R(T ) does not de-
pend on the time of observation. Of course, this is only a
qualitative test.

A practical realization of an experimental test of
CPT invariance in high-energy reactions e− + Z →
Z + M0 + µ− and e+ + Z → Z + M̄0 + µ+ depends
on the statistics of favourable events N = σLT which
can be detected during a certain interval of observa-
tion T . Nowadays, the HERA Collider at DESY operates
27.5 GeV electron and positron beams with luminosities
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Le− = (15–17) × 1030 cm−2 s−1 = (15–17) pb−1

(H1–ZEUS) and Le+ = (65–68) × 1030 cm−2 s−1 =
(65–68) pb−1 (H1–ZEUS), respectively [15]. For these lu-
minosities the number of events detected during one year
for the production of muonium and anti-muonium are
equal to NM0 = 500σM0 and NM̄0 = 2100σM̄0 , where
cross-sections σM0 and σM̄0 are measured in 1 pb =
10−36 cm2.

Thus, the problem of the experimental realization
of a test of CPT invariance suggested by Choban and
Kazakov [12] is related to i) the values of the cross-
sections for the reactions e− + Z → Z + X0 + µ− and
e+ + Z → Z + X̄0 + µ+, defining the total number of
favourable events and ii) a distinct signal that in the reac-
tions e− +Z → Z+X0 +µ− and e+ +Z → Z+ X̄0 +µ+,
the states X0 and X̄0 should be identified with muonium
M0 and anti-muonium M̄0, i.e. X0 = M0 and X̄0 = M̄0,
respectively.

It is well known that a more detailed information about
nuclear reactions can be obtained investigating polariza-
tions of coupled particles. Therefore, in this paper we focus
on the calculation of the cross-sections for the high-energy
reactions e−+Z → Z+M0+µ− and e++Z → Z+M̄0+µ+

in dependence on the polarizations of the initial elec-
tron and positron and of the final muons µ− and µ+.
Following [16], we denote these reactions as �e − + Z →
Z + M0 + �µ − and �e + + Z → Z + M̄0 + �µ +. We sup-
pose that the dependence on polarizations of final muons
relative to polarizations of initial electrons and positrons
should provide a necessary distinct signal confirming the
production of muonium and anti-muonium with a total
spin J = 0 in the reactions �e − + Z → Z +X0 + �µ − and
�e + +Z → Z+ X̄0 +�µ +. Indeed, the processes competing
with �e − +Z → Z+X0 +�µ − and �e + +Z → Z+X̄0 +�µ +

are the reactions �e ∓ +Z → Z+�e ∓ +µ + +µ − of the pro-
duction of the µ+µ− pairs. In these reactions the momenta
and polarizations of µ+ and µ− mesons are strongly corre-
lated to each other and decorrelated with the polarization
of the initial electron (or positron). Therefore, the detec-
tion of longitudinally polarized muons in the final state
of the scattering of longitudinally polarized electrons (or
positrons) by a nucleus Z should be a distinct signal for
the production of muonium (or anti-muonium) with a to-
tal spin J = 0.

The paper is organized as follows. In sect. 2 we cal-
culate the energy spectrum of the final muon and the
cross-section for the reaction �e − + Z → Z + M0 + �µ −.
Since it is obvious that the CPT violation for the cross-
sections is a negligible small effect which can be hardly
measured, the cross-section is calculated assuming CPT
invariance. This implies that the cross-section for the re-
action �e − + Z → Z + M0 + �µ − amounts to the cross-
section for the reaction �e + + Z → Z + M̄0 + �µ +, i.e.
σ

(�e −Z)
M0 (E1) = σ

(�e +Z)

M̄0 (E1). In sect. 3 we estimate the con-
tributions of the finite nuclear radius and the distortion
of the wave functions of incoming and outcoming leptons
caused by the strong Coulomb field induced by the electric
charge Ze with Z ∼ 100. We estimate that the contribu-
tion of the finite radius of the nucleus is of the order of a

few percent. We show that the strong Coulomb field can
hardly destroy the production of bound states of µ+e− and
µ−e+ pairs, i.e. muoniums and anti-muoniums, in the re-
actions under consideration. This is by virtue of the time
of the decays M0 → µ+e− and M̄0 → µ−e+ induced by
the strong Coulomb field which is much greater than the
time of the production of muonium and anti-muonium.
In the conclusion we discuss the obtained results and a
practical realization of experiments on the test of CPT
invariance for the HERA Collider at DESY.

2 Cross-sections for reactions
�e − + Z → Z + M0 + �µ − and
�e + + Z → Z + M̄0 + �µ +

Feynman diagrams describing the amplitude of the reac-
tion �e − + Z → Z +M0 + �µ − are depicted in fig. 1. The
amplitude of the reaction �e − + Z → Z + M0 + �µ − has
been calculated in ref. [12] and reads

M(�e −(p1)Z(p2) → Z(p ′
2)M0(k)�µ −(p ′

1)) =
α2

q2
16π2

me

Ψ1s(0)

m
3/2
µ

+µ Lµ

(q2 − 2q · k)
, (2.1)

where +µ is the electromagnetic current of the nucleus and
Lµ denotes the leptonic current

Lµ = ū(p ′
1, σ

′
1) γ5 (q̂ p ′

1µ − q · p ′
1 γµ)u(p1, σ1), (2.2)

where u(p1, σ1) and ū(p ′
1, σ

′
1) are the bispinorial wave

functions of the initial electron and the final muon µ−,
Ψ1s(0) = 1/

√
πa3

B is the wave function of the muonium
in the ground state, aB = 1/meα = 268.173 MeV−1 is
the Bohr radius of muonium, α = 1/137.036 is the fine-
structure constant.

We would like to emphasize that the leptonic cur-
rent Lµ is calculated in the ultra-relativistic limit, when
masses of leptons are set zero. According to [12] this cor-
responds to the kinematical region, where the squared in-
variant mass of the pair M0µ−, ω2 = (p ′

1 + k)2, is much
greater than the squared mass of the µ−-meson m2

µ, i.e.
ω2 � m2

µ. In this kinematical region muonium with a total
spin J = 0 behaves like a massless neutral scalar point-like
particle.

The cross-section for the reaction �e − +Z → Z+M0 +
�µ − is defined by

σ
(�e −Z)
M0 (E1) =

α7

4π2

me

m3
µ

1
mZE1

∫
TµνR

µν

q4(p1 · p ′
1)2

δ(4)

×(p ′
2 + p ′

1 + k − p2 − p1)
d3k

E

d3p ′
1

E ′
1

d3p ′
2

E ′
2

, (2.3)

where E1 is the energy of the initial electron in the labo-
ratory frame coinciding with the rest frame of the target
nucleus p2µ = (mZ ,�0 ), then E, E ′

1 and E ′
2 are the ener-

gies of the muonium, the µ−-meson and the final nucleus,
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respectively. The tensors Rµν and Tµν are determined by

Rµν =
1
4

Sp{(p̂2 +mZ)+†µ(p̂ ′
2 +mZ)+ν} =

F 2
1Z(q2)

[
2 p2µp2ν − (p2µqν + p2νqµ) +

1
2
q2 gµν

]

+F 2
2Z(q2)

[
2 q2m2

Z gµν + q2 (p2µqν + p2νqµ)

−qµqν
(

1
2
q2 + 2m2

Z

)
− 2 q2 p2µp2ν

]
(2.4)

and

Tµν =
1
4

Sp{(p̂1 − γ5ŵ1)L†
µ(p̂ ′

1 − γ5ŵ
′
1)Lν} =

1
4

Sp{(p̂1 − γ5ŵ1)γ5(q · p ′
1 γµ − q̂ p ′

1µ)

×(p̂ ′
1 − γ5ŵ

′
1)γ5(q · p ′

1 γν − q̂ p ′
1ν)}, (2.5)

where F1Z(q2) and F2Z(q2) are the form factors of a nu-
cleus with a number of protons Z.

The polarization matrices (p̂1−γ5ŵ1) and (p̂ ′
1−γ5ŵ

′
1)

are obtained in the zero-mass limit from the standard
polarization matrices (p̂1 + me)(1 − γ5â) and (p̂ ′

1 + mµ)
×(1−γ5b̂) [16], where aµ and bµ, the polarization 4-vectors
of the initial electron and the final muon, are defined by

aµ =

(
�p1 · �ξ1
me

, �ξ1 +
�p1(�p1 · �ξ1)

me(E1 +me)

)
,

bµ =

(
�p ′

1 · �ξ ′
1

mµ
, �ξ ′

1 +
�p ′

1(�p ′
1 · �ξ ′

1)
mµ(E ′

1 +mµ)

)
. (2.6)

The polarization 4-vectors aµ and bµ are normalized by
aµa

µ = a2
0 − �a 2 = −1 and bµb

µ = b20 −�b 2 = −1. In turn,
the polarization 3-vectors �ξ1 and �ξ ′

1 are normalized by
�ξ 2
1 = �ξ ′ 2

1 = 1. Recall that p1 · a = p ′
1 · b = 0.

According to definitions (2.6) the 4-vectors w1µ and
w ′

1µ are equal to

w1µ = (�p1 · �ξ1, �n1(�p1 · �ξ1)) = (�n1 · �ξ1) p1µ,

w ′
1µ = (�p ′

1 · �ξ ′
1, �n

′
1(�p ′

1 · �ξ ′
1)) = (�n ′

1 · �ξ ′
1) p ′

1µ, (2.7)

where �n1 = �p1/E1 and �n ′
1 = �p ′

1/E
′
1 and

p1 · w1 = p ′
1 · w ′

1 = 0 due to p21 = p ′ 2
1 = 0. The

analytical expression of Tµν is given by

Tµν = − 2 [1 + (�n1 · �ξ1)(�n ′
1 · �ξ ′

1)] (p1 · p ′
1)[(q · p ′

1)2gµν

−(q · p ′
1)(p ′

1µqν + p ′
1νqµ) + q2p ′

1µp
′
1ν ]. (2.8)

Due to the conservation of electric charge, the tensors Tµν

and Rµν are gauge invariant

qµTµν = Tµνq
ν = 0,

qµRµν = Rµνq
ν = 0. (2.9)

The cross-section for the reaction under consideration is
then defined by

σ
(�e −Z)
M0 (E1) =

α7

π2

me

m3
µ

mZ

E1

∫
(−1)

q4(p1 · p ′
1)

×[1 + (�n1 · �ξ1)(�n ′
1 · �ξ ′

1)]
{

(F 2
1Z(q2) − q2F 2

2Z(q2))(q · p ′
1)2

+
q2

m2
Z

[
(F 2

1Z(q2) − q2F 2
2Z(q2))

(
(p2 · p ′

1)2

−(q · p ′
1)(p2 · p ′

1)
)

+
1
2

(F 2
1Z(q2) + 4m2

ZF
2
2Z(q2))

× (q · p ′
1)2

]}
δ(4)(p ′

2 + p ′
1 + k − p2 − p1)

d3k

E

d3p ′
1

E ′
1

d3p ′
2

E ′
2

.

(2.10)

The integration over the phase volume of the final state
ZM0µ−, we suggest to carry out in the non-relativistic
limit of motion of the final nucleus [17]. In this approx-
imation the 4-momentum of a final nucleus is equal to
p ′

2µ = (mZ + �q 2/2mZ ,−�q ) = (mZ + T2,−�q ), then the
transferred 4-momentum qµ = (−T2, �q ) and q2 = −�q 2.

In the non-relativistic limit of motion of the final nu-
cleus the cross-section (2.10) reduces to the form

σ
(�e −Z)
M0 (E1) = Z2 α

7

π2

me

m3
µ

1
E1

∫
1

E1E ′
1 − �p1 · �p ′

1

×
[

1 + (�n1 · �ξ1)
(
�p ′

1 · �ξ ′
1

E ′
1

)] (
E1

′ 2 − (�q · �p ′
1)2

�q 2

)

× δ(E ′
1 + E + T2 − E1)

× δ(3)(�p ′
1 + �k − �q − �p1)

d3k

E

d3p ′
1

E ′
1

d3q

�q 2
, (2.11)

where we have taken into account that F1Z(0) = Z [17]
and that the main contribution comes from transferred
momenta �q 2 co-measurable with zero. The former corre-
sponds to the Weizsäcker-Williams approximation [18–23].

To simplify the calculation of the phase volume, we
neglect the contribution of the kinetic energy of the fi-
nal nucleus, which is small compared with the the typical
transferred energies of coupled leptons. Integrating over
�k, the 3-momentum of muonium, we get

σ
(�e −Z)
M0 (E1) = Z2 α

7

π2

me

m3
µ

1
E1

∫
E ′

1

E1E ′
1 − �p1 · �p ′

1

×
[

1 + (�n1 · �ξ1)
(�p ′

1 · �ξ ′
1

E ′
1

)](
1 − (�q · �p ′

1)2

�q 2E1
′ 2

)

× δ(E1 − E ′
1 − |�p ′

1 − �p1 − �q |) d3p ′
1

|�p ′
1 − �p1 − �q |

d3q

�q 2
=

Z2 α
7

π2

me

m3
µ

1
E1

∫ [
1 + (�n1 · �ξ1)

(
�p ′

1 · �ξ ′
1

E ′
1

)]

× E ′
1 I(�p1, �p ′

1)
E1E ′

1 − �p1 · �p ′
1

d3p ′
1, (2.12)
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where we have put

I(�p1, �p ′
1) =

∫ (
1 − (�q · �p ′

1)2

�q 2E1
′ 2

)

× δ(E1 − E ′
1 − |�p ′

1 − �p1 − �q |) 1
|�p ′

1 − �p1 − �q |
d3q

�q 2
.

(2.13)

The integration over �q we carry out assuming that
|�p ′

1 − �p1| � |�q | that is valid for the Weizsäcker-Williams
approximation. Using the vector �z = �q/|�p ′

1−�p1| we obtain

I(�p1, �p ′
1) =

∫ (
1 − (�z · �p ′

1)2

�z 2E1
′ 2

)

× δ
(
E1 − E ′

1 − |�p ′
1 − �p1| + (�p ′

1 − �p1) · �z
)

d3z

�z 2
.

(2.14)

Now it is convenient to introduce the new variables x =
E ′

1/E1, �n ′
1 = �p ′

1/E
′
1 and �n1 = �p1/E1. In these variables

the function I(�p1, �p ′
1) reads

I(�p1, �p ′
1) =

1
E1

∫ (
1 − (�z · �n ′

1)2

�z 2

)

× δ
(

1 − x− |x�n ′
1 − �n1| + (x�n ′

1 − �n1) · �z
)

d3z

�z 2
.

(2.15)

The next step in the integration over �z is to rewrite the
integral in the following form:

I(�p1, �p ′
1) =

1
πE1

Re
∞∫
0

dλ eiλ(1 − x− |x�n ′
1 − �n1|)

×
∫ (

1 +
1

λ2�z 2

∂2

∂x2

)
eiλ(x�n ′

1 − �n1) · �z d3z

�z 2
. (2.16)

Since the integrals over �z are equal to

∫
eiλ(x�n ′

1 − �n1) · �z d3z

�z 2
=

4π
λ|x�n ′

1 − �n1|

∞∫
0

sin z
z

dz =

4π
λ|x�n ′

1 − �n1| lim
α→1

∞∫
0

sin z
zα

dz =

4π
λ|x�n ′

1 − �n1| lim
α→1

Im
∞∫
0

dz eizz−α =

4π
λ|x�n ′

1 − �n1| lim
α→1

Im Γ (1 − α)
(−i)1−α

=

4π
λ|x�n ′

1−�n1| lim
α→1

Γ (2−α)
sin

(π
2

(1−α)
)

1−α =
2π2

λ|x�n ′
1−�n1|

(2.17)

and

∫
eiλ(x�n ′

1 − �n1) · �z d3z

�z 4
= 4πλ|x�n ′

1 − �n1|
∞∫
0

sin z
z3

dz =

4πλ|x�n ′
1 − �n1| lim

α→3
Im

∞∫
0

dz eizz−α =

4πλ|x�n ′
1 − �n1| lim

α→3
Im Γ (1 − α)

(−i)1−α
=

4πλ|x�n ′
1 − �n1| lim

α→3
Γ (1 − α) sin

(π
2

(1 − α)
)

=

4πλ|x�n ′
1 − �n1| lim

α→3
Γ (4 − α)

sin
(π

2
(1 − α)

)
(1 − α)(2 − α)(3 − α)

=

−4πλ|x�n ′
1 − �n1| lim

α→3
Γ (4 − α)

×
sin

(π
2

(3 − α)
)

(1 − α)(2 − α)(3 − α)
= −π2λ|x�n ′

1 − �n1|, (2.18)

the function I(�p1, �p ′
1) is defined by the integral over λ

I(�p1, �p ′
1) =

π

E1

(
1

|x�n ′
1 − �n1| +

(x− �n ′
1 · �n1)2

|x�n ′
1 − �n1|3

)

×
∞∫
0

dλ
λ

cos(λ(1 − x− |x�n ′
1 − �n1|)). (2.19)

The integral over λ is divergent. However, it can be
regularized by following the theory of generalized func-
tions [24]. The result reads

I(�p1, �p ′
1) =

π

E1

(
1

|x�n ′
1 − �n1| +

(x− �n ′
1 · �n1)2

|x�n ′
1 − �n1|3

)

× ln

(
1

|x�n ′
1 − �n1| − (1 − x)

)
. (2.20)

Substituting (2.20) in (2.12) and proceeding to variables
x and �n ′

1 we define the energy spectrum of the final µ−-
meson:

1
x2

dσ(�e −Z)
M0 (E1)

dx
= Z2 α

7

π

me

m3
µ

∫
1 + (�n1 · �ξ1)(�n ′

1 · �ξ ′
1)

1 − �n1 · �n ′
1

×
(

1
|x�n ′

1 − �n1| +
(x− �n ′

1 · �n1)2

|x�n ′
1 − �n1|3

)

× ln

(
1

|x�n ′
1 − �n1| − (1 − x)

)
dΩ �n ′

1
. (2.21)

For the subsequent integration over the unit vector �n ′
1 we

introduce the angular variables as follows:

�n1 · �n ′
1 = cosϑ′1,

�n ′
1 · �ξ ′

1 = cosϑ′1 cosΘ′
1 + sinϑ′1 sinΘ′

1 cos(ϕ′
1 − Φ′

1 ),
dΩ �n ′

1
= sinϑ′1dϑ′1dϕ′

1, (2.22)
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where Θ′
1 and Φ′

1 are polar and azimuthal angles of the
polarization vector �ξ ′

1 relative to the momentum �p1. In
(2.22) we have taken into account that |�ξ ′

1| = 1. Integrat-
ing over ϕ′

1 we get

1
x2

dσ(�e −Z)
M0 (E1)

dx
= 2Z2α7me

m3
µ

π∫
0

1+(�n1 ·�ξ1) cosϑ′1 cosΘ′
1

1 − cosϑ′1

×
(

1√
1 − 2x cosϑ′1 + x2

+
(x− cosϑ′1)2

(1 − 2x cosϑ′1 + x2)3/2

)

× ln

(
1√

1 − 2x cosϑ′1 + x2 − (1 − x)

)
sinϑ′1dϑ′1 . (2.23)

Now it is convenient to introduce a new variable t =√
1 − 2x cosϑ′1 + x2, which varies in the limits 1 − x ≤

t ≤ 1 + x. In terms of t the energy spectrum (2.23) reads

1
x

dσ(�e −Z)
M0 (E1)

dx
=

2Z2α7me

m3
µ

1+x∫
1−x

2x+ (1 + x2 − t2)(�n1 · �ξ1) cosΘ′
1

t2 − (1 − x)2

×
(

1 +
(1 − x2 − t2)2

4x2t2

)
+n

( 1
t− (1 − x)

)
dt. (2.24)

It is seen that the integral over t is concentrated in the
vicinity of the lower limit. The singularity of the in-
tegrand in the vicinity of the lower limit can be eas-
ily regularized by making a change of the lower limit
1 − x → 1 − x + Λ2/E2

1 , where Λ is a cut-off restrict-
ing energies of the final µ−-meson from below. According
to the kinematical region ω2 � m2

µ [12] the cut-off Λ can
be chosen of order of Λ � 1 GeV. Such a dependence on
the cut-off Λ can be justified as follows: E ′

1 = |�p ′
1| =√

(�p ′
1)2 + Λ2 − Λ2 =

√
(�p ′

1)2 + Λ2 − Λ2/
√

(�p ′
1)2 + Λ2 →

E ′
1 − Λ2/E ′

1 ≈ E ′
1 − Λ2/E1.

Keeping only the dominant contributions to the inte-
gral over t, we get

dσ(�e −Z)
M0 (E1)

dx
= 8Z2α7me

m3
µ

ln2

(
E1

Λ

)

× x2

1 − x
[1 + (�n1 · �ξ1) cosΘ′

1 ]. (2.25)

Introducing the angle Θ1, defined by �n1 · �ξ1 = cosΘ1,
where we have taken into account that |�ξ1| = 1, we obtain
the energy spectrum of µ−-mesons for the reaction �e − +
Z → Z + M0 + �µ − in dependence on the polarizations
of the initial electron and the final µ−-muon described by
the angles Θ1 and Θ ′

1:

dσ(�e −Z)
M0 (E1)

dx
= 8Z2α7me

m3
µ

ln2

(
E1

Λ

)

× x2

1 − x
(1 + cosΘ1 cosΘ′

1 ). (2.26)

Integrating over x, we arrive at the total cross-section for
the reaction �e − + Z → Z +M0 + �µ −:

σ
(�e −Z)
M0 (E1) = 16Z2α7me

m3
µ

ln3

(
E1

Λ

)
(1 + cosΘ1 cosΘ′

1 ).

(2.27)
Assuming that electrons are longitudinally polarized elec-
trons, cosΘ1 = 1, one can see that for fixed electron en-
ergy the cross-section acquires the maximal value only
for longitudinally polarized muons, cosΘ′

1 = 1. This
agrees with the production of muonium with a total spin
J = 0. Thus, we argue that the appearance of longitu-
dinally polarized muons in the final state of the reaction
�e − + Z → Z + X + �µ − should testify the production of
muonium X ≡M0.

For the numerical estimate of the cross-sections at the
energies available for the HERA Collider at DESY [15],
i.e. E1 = 27.5 GeV, we suggest to use radon, 222

86Rn,
as a target nucleus, since radon has spin 1/2. The
cross-sections for longitudinally polarized electrons and
positrons scattering by 222

86Rn and longitudinally polarized
muons are equal to

σ
(�e −Rn)
M0 (E1 = 27.5 GeV) =

σ
(�e +Rn)

M̄0 (E1 = 27.5 GeV) = 1.6 pb. (2.28)

In our calculation the cross-section for the reaction e− +
Z → Z + M0 + µ− has turned out to be dependent on
the cut-off Λ � 1 GeV. In this connection we would like
to remind that the problem of the appearance of a cut-off
in the cross-sections for some reactions calculated within
the Weizsäcker-Williams approximation has been pointed
out by Bertulani and Baur [20].

Now let us discuss the energy dependence of the cross-
section (2.27). It is well known that for the e+e− pair
production in heavy-ion collisions [20–22] and pp̄ colli-
sions [23] the cross-section for a capture of the final elec-
tron in an atomic K-shell orbit is proportional to ln(γcoll),
where γcoll is a Lorentz factor of colliding particles in the
center-of-mass frame. This factor is related to the corre-
sponding Lorentz factor γp of the projectile (for a fixed-
target machine) by γp = 2γ2

coll−1 [20,22], where γp ∼ E1.
In turn, the cross-section for the production of a point-

like neutral scalar particle in high-energy heavy-ion colli-
sions in the Weizsäcker-Williams approximation is propor-
tional to ln3(γcoll) [20,22].

For very high energies, when masses of coupled leptons
can be neglected, muonium with a total spin J = 0 can
be treated as a point-like massless scalar neutral particle.
Such a property of the muonium is caused by an additional
pole singularity appearing at (q − k)2 = q2 − 2k · q = 0
for k2 = m2

µ = 0 (see eq. (2.1)). This makes the upper
part of the diagram in fig. 1, responsible for the creation
of muonium, equivalent to the amplitude of the process
γ∗ + γ∗ → M0, where γ∗’s are virtual photons. That is
why the obtained cross-section for the reaction e− +Z →
Z+M0+µ− has turned out to be proportional to ln3(γcoll).
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3 Influence of a finite radius of a nucleus and
a distortion of wave functions of coupled
leptons

In this section we estimate the influence of a finite radius
of the nucleus Z. According to [17], the form factor of
the nucleus with a mass number A can be defined by the
expansion

1
Z
F1Z(q2) = 1 − 1

6
r2A �q

2 +O(�q 4) , (3.1)

where we identify rA with the radius of a nucleus with
mass number A given by [17]

rA = 1.2A1/3 fm = 6.1A1/3 GeV−1. (3.2)

Due to the finite value of the nuclear radius, the function
I(�p1, �p ′

1) changes as follows:

δI(�p1, �p ′
1) =

− π

E1

1
3
r2AE

2
1

(
− 1

|x�n ′
1 − �n1| + 3

(x− �n ′
1 · �n1)2

|x�n ′
1 − �n1|3

)

×(1 − x− |x�n ′
1 − �n1|)2 ln

(
1

|x�n ′
1 − �n1| − (1 − x)

)
.

(3.3)

In the region of the integration over t, dominant for the
leading term of the expansion of the form factor F1Z(�q 2)
into the powers of �q 2, the contribution of the finite radius
of the nucleus can be summarized as

σ
(�e −Z)
M0 (E1) =

16Z2α7(
1 +

1
6
r2AΛ

4

E2
1

)2

me

m3
µ

× ln3

(
E1

Λ

)
(1 + cosΘ1 cosΘ′

1 ). (3.4)

For the electron (positron) scattering by 222
86Rn with the

laboratory energy E1 = 27.5 GeV the correction to the
cross-section, caused by the finite value of the nucleus ra-
dius (3.2), can be made of the order of 4% varying the
parameter Λ from Λ � 1 GeV to Λ � 0.8 GeV in compar-
ison with the value of the cross-section (2.28) calculated
for E1 = 27.5 GeV, Λ � 1 GeV and rA = 0. Hence, in the
Weizsäcker-Williams approximation [18–23] without loss
of generality we can treat a nucleus Z in the reactions
�e− +Z → Z +M0 + �µ− and �e+ +Z → Z + M̄0 + �µ+ as
a point-like particle with electric charge Ze.

In the strong Coulomb field caused by a point-like
charge Ze for Z ∼ 100 the wave functions of the initial
electron (positron) and the final muon should be distorted.
According to [17], at very high energies and in the eiconal
approximation these wave functions can be written in the

following form:

Ψe −(�r1; �p1, σ1) in = u(�p1, σ1) exp

×
{

+ i�p1 · �r1 + i
E1

|�p1|
∫ ∞

0

Ze2 ds√
�ρ 2
1 + (z − s)2

}
,

Ψµ −(�r ′
1; �p ′

1, σ
′
1) out = u(�p ′

1, σ
′
1) exp

×
{

+ i�p ′
1 · �r ′

1 − i
E ′

1

|�p ′
1|

∫ ∞

0

Ze2 ds√
�ρ

′2
1 + (z ′ + s)2

}
, (3.5)

where �ρ1 and �ρ ′
1 are components of the radius-vectors

�r1 and �r ′
1 perpendicular to the momentum �p1 and �p ′

1,
respectively.

In the limit me = mµ = 0 the wave functions (3.5)
change to

Ψe −(�r; �p1, σ1) in = u(�p1, σ1) exp

×
{

+ i�p1 · �r + i

∫ ∞

0

Ze2 ds√
�ρ 2 + (z − s)2

}
,

Ψµ −(�r; �p ′
1, σ

′
1) out = u(�p ′

1, σ
′
1) exp

×
{

+ i�p ′
1 · �r − i

∫ ∞

0

Ze2 ds√
�ρ 2 + (z + s)2

}
, (3.6)

where we have taken into account the fact that at high
energies effectively the production of the final muon occurs
at the same spatial point �r1 = �r ′

1 = �r, where the initial
electron has been absorbed. The amplitude of the reaction
�e − + Z → Z +M0 + �µ − is proportional to the product

Ψ †
µ −(�r; �p ′

1, σ
′
1)inΨe −(�r; �p1, σ1)out ∼

exp

{
i

∫ ∞

0

Ze2 ds√
�ρ 2 + (z + s)2

+ i

∫ ∞

0

Ze2 ds√
�ρ 2 + (z − s)2

}
=

exp

{
i

∫ ∞

−∞

Ze2 ds√
�ρ 2 + s2

}
= e−i Ze2 ln[C�ρ 2] , (3.7)

where C is an undefined constant related to the large-
distance regularization of the integrals in (3.7). The spino-
rial factor has been taken already into account for the
calculation of the cross-section (2.27) or (3.4).

Formally, the amplitude of the reaction �e − + Z →
Z + M0 + �µ − in the momentum representation should
be obtained by means of the integration over the configu-
ration space that includes the integration over �ρ as well.
However, due to the presence of the undefined infinitesi-
mal constant C, the integration over �ρ can be reduced to
the replacement of �ρ 2 by an average value.

Since |�ρ | is a transversal scale of the reaction �e −+Z →
Z+M0+�µ −, which can be treated as an impact parameter
of this reaction, for an estimate of an average value of this
parameter we can set �ρ 2 ∼ σ(�e −Z)(E1)max ∼ ln3(E1/Λ).
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This yields

Ψ †
µ −(�r; �p ′

1, σ
′
1)Ψe −(�r; �p1, σ1) ∼ e−i Ze2 ln[C ′ ln3(E1/Λ)] .

(3.8)
As the cross-section for the reaction is proportional to
|Ψ †

µ −(�r; �p ′
1, σ

′
1)Ψe −(�r; �p1, σ1)|2, the distortion of the wave

functions of the initial and final leptons caused by the
strong Coulomb field does not change crucially the cross-
section for the reaction �e −+Z → Z+M0+�µ − calculated
for the wave functions of the coupled leptons in the form
of plane waves.

For the estimate of the influence of the strong Coulomb
field on the state of muonium we suggest to calculate the
time of the decay M0 → µ+ + e− induced by the external
Coulomb field. The amplitude of the decayM0 → µ++e−,
we define as

M(M0 → µ+ + e−) =

∫
1√
V
e−i�p · �r U(�r )

1√
πa3

B

e−r/aB d3r, (3.9)

where �p is a relative momentum of the µ+e− pair, aB =
268.173 MeV−1 is the Bohr radius of muonium, and V is a
normalization volume. Then, U(�r ) is the potential energy
of the dipole moment �d = e�r of the µ+e− pair coupled to
the strong Coulomb field of the nucleus Z

U(�r ) = −�d · �E(�r ) =
Ze2

r
. (3.10)

Integrating over �r we get

M(M0 → µ+ + e−) =
4πZe2√
V πa3

a2
B

1 + a2
Bp

2
. (3.11)

The time of the decay M0 → µ+ + e− is equal to

τ−1(M0 → µ+e−) =
32Z2α2

a3
BE

2
M0

=
32Z2α5

E2
M0

(
memµ

me +mµ

)3

,

(3.12)
where EM0 is the energy of the muonium in the rest
frame of the nucleus Z. Since EM0 � 5 GeV, for 222

86Rn
we estimate τ(M0 → µ+e−) � 2.6 × 10−8 s. The time
of the interaction of the electron scattering by radon,
during which muonium can be produced, is of the order
τ ∼ 10−8 s. This means that the strong Coulomb field
does not affect crucially the production of muonium or
anti-muonium in the reactions �e − + Z → Z + M0 + �µ −
and �e + +Z → Z + M̄0 + �µ +. Of course, a more detailed
analysis of the Coulomb distortion of the wave functions
of leptons in the reactions �e − + Z → Z +M0 + �µ − and
�e + +Z → Z + M̄0 + �µ + and the influence of this distor-
tion on the production of muonium M0 and anti-muonium
M̄0 is required. We are planning to analyse this problem
in our forthcoming investigations.

4 Conclusion

We have calculated the cross-sections for the reactions
�e − + Z → Z + M0 + �µ − and �e + + Z → Z + M̄0 + �µ +

of the production of muonium M0 and anti-muonium M̄0

with polarized µ− and µ+ mesons by polarized electrons
and positrons coupled at high energies to the nucleus Z.

The cross-sections are calculated in dependence on
i) the energy E1 of the initial electron and positron in
the laboratory frame, coinciding with the rest frame of a
target nucleus Z, and ii) polarizations of the initial elec-
tron and positron and final muons in the kinematical re-
gion ω2 = (p′1 + k)2 � m2

µ, making the massless limit of
coupled leptons reasonable.

For the numerical estimate of the cross-sections at the
energies available for the HERA Collider at DESY [15],
i.e. E1 = 27.5 GeV, we suggest to use radon, 222

86Rn, as
target nucleus, since radon has spin 1/2. The theoreti-
cal values of the cross-sections for longitudinally polarized
electrons and positrons scattering by 222

86Rn are equal to
σ

(�e −Rn)
M0 (E1 = 27.5 GeV) = σ

(�e +Rn)

M̄0 (E1 = 27.5 GeV) =
1.6 pb. For these cross-sections we predict the following
numbers of favourable events: NM0 = 808 and NM̄0 =
3360. Hence, the increase of luminosities of electron and
positron beams should make the experiment for a test of
CPT invariance, suggested by Choban and Kazakov in
ref. [12], feasible at DESY.

We have estimated the influence of the finite nuclear
radius and the Coulomb distortion of the wave functions
of the leptons. According to our estimate in the kinemat-
ical region ω2 = (p′1 + k)2 � m2

µ the Weizsäcker-Williams
approach, treating a nucleus as a point-like particle and
neglecting the Coulomb distortion of the wave functions of
incoming and outcoming leptons, is a rather well-defined
approximation. The contribution of the finite nuclear ra-
dius can be kept at the level of a few percents. The dis-
tortion of the wave functions of the initial and final lep-
tons caused by the strong Coulomb field does not change
the cross-sections for the reactions under consideration.
During the time of the production of muonium or anti-
muonium, the strong Coulomb field, induced by the charge
of the nucleus Ze, does not destroy the bound states of
the µ+e− or µ−e+ pairs. Hence, the strong Coulomb field
can hardly screen the phenomenon of the violation of CPT
invariance in the reactions �e − + Z → Z +M0 + �µ − and
�e + + Z → Z + M̄0 + �µ +.

We have shown that the test of CPT invariance in
the reactions �e − + Z → Z + M0 + �µ − and �e + + Z →
Z + M̄0 + �µ + reduces to the experimental analysis of the
ratio R(T ) = NM0(T )/NM̄0(T ) (1.15) of the numbers of
favourable events detected during an interval T . If R(T ) is
a constant in time —CPT invariance is conserved, and if
R(T ) is an oscillating function in time, one can conclude
that CPT invariance is violated.

We would like to accentuate that this is a qualitative
analysis of CPT invariance. In the case of the ratio R(T )
oscillating in time we can infer neither a strength nor a
nature of violation of CPT invariance.
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We argue that the appearance of longitudinally polar-
ized muons in the final states of the reactions �e − + Z →
Z +X + �µ − and �e + + Z → Z + X̄ + �µ + with longitudi-
nally polarized electrons and positrons is a distinct signal
for the production of muonium M0 and anti-muonium M̄0

with a total spin J = 0. This should testify that X ≡M0

and X̄ ≡ M̄0 with a total spin J = 0.
Indeed, the creation of the µ+µ− pairs in the reac-

tions �e ∓ +Z → Z + �e ∓ + µ+ + µ− seems to be the main
process competing with the production of muonium and
anti-muonium in the reactions �e − + Z → Z + M0 + �µ −
and �e + + Z → Z + M̄0 + �µ +. The main distinction
of the production of the µ+µ− pairs from the produc-
tion of muonium and anti-muonium is a strong correla-
tion between the momenta and polarizations of µ+ and
µ− and a decorrelation of them with the initial electron
or positron. In turn, a strong correlation between the po-
larizations of the final muons and the initial electron and
positron is a feature of the production of muonium and
anti-muonium with a total spin J = 0 in the reactions
�e − + Z → Z +M0 + �µ − and �e + + Z → Z + M̄0 + �µ +.
Hence, at first glimpse, for the experimental realization
of the test of CPT invariance in the reactions �e − + Z →
Z+M0 +�µ − and �e + +Z → Z+M̄0 +�µ + with longitudi-
nally polarized electrons and positrons it suffices to count
the number of longitudinally polarized µ− and µ+ mesons
during an interval T . Plotting the ratio of these numbers,
which should coincide with R(T ), one should obtain an
experimental information about CPT invariance.
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